Björn Schuller

BIG DATA, DEEP LEARNING AT THE EDGE OF X-RAY SPEAKER ANALYSIS

SPECOM / ICR 2017

Björn W. Schuller

Imperial College London

Data?

• 2.0 Yet?

0-1 years:	1 – 100 hrs	ASA
------------	--------------------	-----

2-3 years: ~**1000** hrs

10-x years: ~**10000** hrs **ASR**

R. Moore, "A Comparison of the Data Requirements of Automatic Speech Recognition Systems and Human Listeners", 2003.

→ Recognise states/traits independent of person, content, language, cultural background, acoustic disturbances at human parity?

Holism.

• Multiple-Targets

• 1 Voice

Depth.

state			trait
spontaneous			acted
complex			simple
measured			assessed
continuous			categorical
felt			perceived
intentional			instinctual
consistent			discrepant
private			social
prototypical			peripheral
universal			culture-specific
uni-modal			multi-modal

Björn Schuller

Holistic Depth.

"Reading the Author and Speaker: Towards a Holistic and Deep Approach on Automatic Assessment of What is in One's Words", CICLing, 2017.

Big Data.

Björn Schuller

Going Larger.

Epilepsy, MS & Depression

Big data RMT platform Monitoring sleep, activity, gait, speech, social connectivity, e-health records, ... Data visualisation for patients / clinicians Real-time

100k participants in UK

Child Language Development

Analyzing Child Language Experiences around the World Child vocalisation maturity Child/Adult directed speech

Big Data.

Big Vs

Volume – e.g., 300 hours videos / min(YouTube, Dec 2014)Velocity – e.g., 500 mio Tweets / day(Twitter, Aug 2013)Variety – e.g., text, audio, video, sensors, diverse formats

Volume

13 TB / 8300 h

1.3 bio users

350 mio tweets/day

130 mio web pages

• Challenges

Unstructured, HW limits (data: ~ x2/1.5 years, disk speed: linear...) Scaling, Visualisation, Privacy, Ethics...

Chances

Parallelisation (GPGPUs, multicore, etc.)

Distribution (Cloud MapReduce, Disco, Hadoop, Skynet, etc.)

"Efficient Data Exploration for Automatic Speech Analysis: Challenges and State of the Art", IEEE Signal Processing Magazine, 2017.

Björn Schuller

Cross-Task.

Cross-Task Self-Labelling

%UA	Base	CTL
Extraversion	71.7	+1.8
Agreeableness	58.6	+4.5
Neuroticism	63.3	+3.0
Likability	57.2	+2.9

Algorithm: Cross-Task Labelling Repeat for each task: Repeat until $U \in \{\}$:

- 1. (Optional) Upsample training set \mathcal{L} to even class distribution \mathcal{L}_D
- 2. Use $\mathcal{L}/\mathcal{L}_D$ to train classifier \mathcal{H} , then classify \mathcal{U}
- 3. Select a subset N_{st} that contains those instances predicted with the highest confidence values
- 4. Remove \mathcal{N}_{st} from the unlabelled set $\mathcal{U}, \mathcal{U} = \mathcal{U} \setminus \mathcal{N}_{st}$
- 5. Add \mathcal{N}_{st} to the labelled set $\mathcal{L}, \mathcal{L} = \mathcal{L} \cup \mathcal{N}_{st}$

"Semi-Autonomous Data Enrichment Based on Cross-Task Labelling of Missing Targets for Holistic Speech Analysis", ICASSP, 2016.

Big Data?

Targeted Data Acquisition

Small World Modelling: find highly related videos Local Clustering Coeff.+Maximum Clique Problem Example: 3k videos for rapid training of new tasks

Task	%UA	BEST
Freezing	70.2	func.
Coughing	97.6	BoAW
Sneezing	85.2	NN
Intoxicat.	72.6	BoAW

"CAST a Database: Rapid Targeted Large-Scale Audio-Visual Data Acquisition via Small-World Modelling of Social Media Platforms", ACII, 2017.

Human-in-the-Loop.

PLAY	🟫 Home 🛛 👁 Play 👻 🛄 Leaderb
rogress of database: Eating	
The North Wind an	d the Sun were disputing which was the
	and see which is a survey of the state of the second
	all and all the second and the second and
Play	
	Report a problem
Dadaa Nama	Conditions
Badge Name	Conditions
Early Bird	Answer 100 questions betwee
Night Owl	Answer 100 questions betwee
^r Expert	Reach a score of 5000 Points
Master	Reach a score of 20000 Point
Powerman	Collect 100 Bonus Items (in t
Regular Custome	r Have a constant log-in streak
Way to go	Answer 100 questions in total
Autobiographer	Fill out own bibliography
Chatterbox (hidde	en) Used the contact form 5 time
ersonal Multiplier (?): • • • •	

L	ast 7 days	Last 30 days	All time
ŧ	Username	Rank	Gamerscore
	Maryna	Intermediate	★ 30828
2	max	Intermediate	29848
3	isa	Intermediate	22630
Ř	zixing	Novice	10100
ŝ	jing	Novice	10092
l	Christoph	Novice	9075
,	Hesy	Beginner	2552
	Simone	Beginner	2035

Dataset of the week

ASPA (nativeness)

This dataset is a collection of 30 second excerpts of various scientific talks. Here we would like to know how you would rate the speaker's proficiency of the English language.

7HEAR (((U PLAY

"iHEARu-PLAY: Introducing a game for crowdsource

Play this dataset

SA, 2015.

Björn Schuller

Big Data?

Cooperative Learning in aRMT

- 0) Transfer Learning
- 1) Dynamic Active Learning
- 2) Semi-Supervised Learning

Iteration

"Cooperative Learning and its Application to ESR", IEEE Transactions on Audio Speech and Language Processing, 2015.

Björn Schuller

"Universum Autoencoder-based Domain Adaptation for Speech Emotion Recognition", **Signal Processing Letters**, 2017.

Björn Schuller

"Towards Intelligent Crowdsourcing for Audio Data Annotation: Integrating Active Learning in the Real World", Interspeech 2017.

Björn Schuller

AL.

• Reality...

FAU AIBO Arousal AL

"Towards Intelligent Crowdsourcing for Audio Data Annotation: Integrating Active Learning in the Real World", Interspeech 2017.

Björn Schuller

SSL.

• AEs for SSL

Supervised Learning: Keep only relevant info

Unsupervised AEs: Keep al info for reconstruction

w/o (left) or w/ (right)
skip compensation

Weights: Weighted linear combination, BN: Batch normalisation, ReLU: Rectified linear unit, Addition: Element-wise addition.

Decoder

"Semi-Supervised Autoencoders for Speech Emotion Recognition", IEEE Transactions on Audio Speech and Language Processing, 2017.

Björn Schuller

SSL.

• AEs for SSL

Test on FAU AEC skip compensation

- - - SS-AE-Skip (AEC)

"Semi-Supervised Autoencoders for Speech Emotion Recognition", IEEE Transactions on Audio Speech and Language Processing, 2017.

SSL.

AEs for SSL
 Test on GEWEC
 skip compensation

"Semi-Supervised Autoencoders for Speech Emotion Recognition", IEEE Transactions on Audio Speech and Language Processing, 2017.

Björn Schuller

Big Data: Velocity.

Parallelisation

"Big Data Multimedia Mining: Feature Extraction facing Volume, Velocity, and Variety", to appear.

Björn Schuller

Big Data: Velocity.

GPU-Preprocessing

 Parallel NMF Source Separation
 500 x 1000 matrix
 KL divergence

RTF	CPU	GPU
Double	.522	.068
Single	.937	.033

"Optimization and Parallelization of Monaural Source Separation Algorithms in the openBliSSART Toolkit", **Journal of Signal Processing Systems**, Springer, 2012.

Björn Schuller

Big Data: Velocity.

GPU feature extraction

"GPU-based Training of Autoencoders for Bird Sound Data Processing", IEEE ICCE-TW, 2017.

Big Data: Velocity.

• GPU-Learning

10 – 1k LSTM cells, 2k – 4Mio parameters GPGPU

CURRENNT

CHIME 2 RI	NNLIB	CU	RRE	NNT
#seq.	1	1	10	200
speedup	(1)	2	13	22

"Introducing CURRENNT - the Munich Open-Source CUDA RecurREnt Neural Network Toolkit", **Journal of Machine Learning Research**, 2014.

Big Data: Velocity.

AlexNet	VGG19		
Input =	RGB image		
size: 227×227 pixels	size: 224×224 pixels		
1×Convolution	2×Convolution		
size: 11; ch: 96; stride: 4	size: 3; ch: 64; stride: 1		
Ma	xpooling		
$1 \times Convolution$	2×Convolution		
size: 5; ch: 256	size: 3; ch: 128		
Ma	xpooling		
1×Convolution	4×Convolution		
$1 \times \text{Convolution}$	size: 3; ch: 256		
512C. <i>J</i> , CII. <i>J</i> 04	Maxpooling		
1 Convolution	4×Convolution		
1 × Convolution	size: 3; ch: 512		
SIZE. <i>J</i> , CII. J04	Maxpooling		
1×Convolution	4×Convolution		
size: 3; ch: 256	size: 3; ch: 512		
Ma	xpooling		
Fully connected <i>fc6</i> layer, 4 096 neurons			
Fully connected f	c7 layer, 4096 neurons		
Fully connec	cted 1 000 neurons		
Output = Probabilities for 1 000 object classes through soft-max			

"Big Data Multimedia Mining: Feature Extraction facing Volume, Velocity, and Variety", to appear.

Deep Learning.

Björn Schuller

Speech Analytics.

• The "Traditional" Engine

"Speech Emotion Recognition: 20 Years in a Nutshell, Benchmarks, and Ongoing Trends", Communications of the ACM, 2017.

Björn Schuller

Speech Analytics 2.0.

• The "Modern" Engine?

"Speech Emotion Recognition: 20 Years in a Nutshell, Benchmarks, and Ongoing Trends", Communications of the ACM, 2017.

Björn Schuller

Feature Extraction.

• Brute-force

High-Dim. Space \rightarrow Basis for selection Online update

"Recent Developments in openSMILE, the Open-Source Multimedia Feature Extractor", ACM Multimedia, 2013.

Björn Schuller

Functionals.

On-device Feature Extraction

Fast computation

openSMILE:)

RTF	Intel	HTC OneM9	Galaxy
.4k	.01	.06	.43
6.4k	.04	.23	.63

"Recent Developments in openSMILE, the Open-Source Multimedia Feature Extractor", **ACM Multimedia**, 2013. (2nd place ACM MM Open Source Software Competition in 2010 and 2013, >1k citations for 3 papers)

https://github.com/openXBOW/openXBOW

Björn Schuller

Bag-of-"X"-Words.

openXBOW –|)→

"openXBOW – Introducing the Passau Open-Source Crossmodal Bag-of-Words Toolkit", Journal of Machine Learning Research, 2017.

Björn Schuller

Bag-of-"X"-Words.

Bags-of-X-Words
 SEWA, openXBOW –|)→

"openXBOW – Introducing the Passau Open-Source Crossmodal Bag-of-Words Toolkit", Journal of Machine Learning Research, 2017.

Convolutional Neural Nets.

Deep Recurrent Nets.

Recurrent neural network unfolded

Björn Schuller

End-to-End

• CNN + LSTM → CLSTM ?

"Adieu Features? End-to-End Speech Emotion Recognition using a Deep Convolutional Recurrent Network", ICASSP, 2016.

Björn Schuller

End-to-End.

• Black Box?

Björn Schuller

End-to-End.

e2e + functionals + BoAW?

	BoAW
84 ₆₋₀	e2e
	func + B
	e2e + fu
	e2e + B
ers	all (conf

Speech under Cold	%UA
func	70.2
BoAW	69.7
e2e	60.0
func + BoAW	70.1
e2e + func	64.8
e2e + BoAW	62.5
all (conf.)	70.7
all (maj. vote)	71.0

"The INTERSPEECH 2017 Computational Paralinguistics Challenge: Addressee, Cold & Snoring", Interspeech, 2017.

Björn Schuller

End-to-End.

CCC	
Arousal	.770
Valence	.612

• AVEC 2015/16 Task

"End-to-End Multimodal Emotion Recognition using Deep Neural Networks", submitted / arxiv.org.

Multi-target.

"Multi-task Deep Neural Network with Shared Hidden Layers: Breaking down the Wall between Emotion Representations", ICASSP, 2017.

Björn Schuller

Pre-Training.

"An Image-based Deep Spectrum Feature Representation for the Recognition of Emotional Speech", **ACM Multimedia**, 2017.

Synthesis?

% UAR	
SVM	42.83
GAN	44.06

GANS Generator & discriminator competing against each other in Zero-sum / Min-Max "game" framework

• Example: Autism Diagnosis from Speech CPESD database: 4 classes, children

"Speech-based Diagnosis of Autism Spectrum Condition by Generative Adversarial Network Representations", ACM Digital Health, 2017.

Deep Context Modelling.

contextual BLSTM (cBLSTM) LM

- exclude predicted word from conditional dependence
- CBLSTM: modified architecture, contextual dependence
- ▶ predict conditional probability $p(w_m|w_1^{m-1}, w_{m+1}^M)$
- > CURRENNT toolkit http://sourceforge.net/p/currennt

"Contextual BLSTM Language Models: A Generative Approach to Sentiment Analysis", **EACL**, 2017.

Björn Schuller

Deep Embedding.

- Seamless Holism
- Horizontal:

Signal Enhancement Feature Extraction Feature Enhancement Feature Transfer Feature Alignment Feature Selection (Bottleneck) Classification / Regression Language Modelling

• Vertical:

Multitarget w/ Confidences (e.g., agreement)

Uncertainty Weighted Combination

Examples.

Björn Schuller

		# Classes	%UA/*AUC/+CC
	Addressee	2	70.6
	Cold	2	72.0
	Snoring	4	70.5
	Deception	2	72.1
	Sincerity	[0,1]	65.4+
Personality	Native Lang.	11	82.2
Likability	Nativeness	[0,1]	43.3+
Intelligibility	Parkinson's	[0,100]	54.0+
Intoxication	Eating	7	62.7
Sleepiness	Cognitive Load	3	61.6
Age	Physical Load	2	71.9
Gender	Social Signals	2x2	92.7*
Interest	Conflict	2	85.9
Emotion	Emotion	12	46.1
Negativity	Autism	4	69.4

Björn Schuller

Diarisation.

• Paralings for Diarisation

System	Miss	FA	sperr	DER
LIUM	6.3	20.1	39.0	65.4
sensAl	15.2	8.1	23.4	46.7
Paralings	6.3	20.4	38.0	64.7

"A Paralinguistic Approach To Holistic Speaker Diarisation", ACM Multimedia, 2017.

8000

6000

Rett & ASC.

Rett & ASC Early Diagnosis
 16 hours of home videos
 6-12 / 10 months

Vocal cues: e.g., inspiratory vocalisation

"A Promising Novel Approach for the Earlier Identification of Rett Syndrome", Rett Syndrome Europe, 2016. "Earlier Identification of Children with Autism Spectrum Disorder: An Automatic Vocalisation-based Approach", Interspeech, 2017.

Björn Schuller

	%UA
Rett Syndrome	76.5
ASC	75.0

Products.

sensAirw

))) audeering™

intelligent Audio Engineering

Voice Fitness Tracker

Get daily statistics about your voice and wellbeing: tone, emotions, vocal stress-level, duration of talking/laughing, and more

Learn more about your daily ambient noise exposure:

Average/peak noise levels and acoustic environment (indoor, nature, traffic, etc.)

Your audio chart

Björn Schuller

0

audeering

1. :

Björn Schuller

Snoring.

VOTE classification (site of vibration)

	%UA
CNN+LSTM	40.3
Functionals	58.8
Deep Spec	67.0

(a) Velum (b) Oropharyngeal lateral walls (c) Epiglottis (d) Tongue "Classification of the Excitation Location of Snore Sounds in the Upper Airway by Acoustic Multi-Feature Analysis", **IEEE Transactions on Biomedical Engineering**, 2017.

Animal Paralinguistics?

Bark Context & Emotion

Mudi, a Hungarian Herding Dog 226 Bark Sequences, 12 different dogs, 6 annotators 5 point likert scale per emotion \rightarrow max emotion

Aggression. Despair. Fear. Fun. Happiness.

Alone. Ball. Fight. Food. Play. Stranger. Walk.

Recognition	%UA
Emotion	.42
Context	.40

"Classifying the Context and Emotions of Dog Barks: A Comparison of Acoustic Feature Representations", SAS, 2017.

Vision.

Conquering the Consumer Market.

Socio-Emotionally Intelligent Dialogs.

Super-human Speaker Analysis.

Abstract

With two years, one has roughly heard a thousand hours of speech - with ten years, around ten thousand. Similarly, an automatic speech recogniser's data hunger these days is often fed in these dimensions. In stark contrast, however, only few databases to train a speaker analysis system contain more than ten hours of speech. Yet, these systems are ideally expected to recognise the states and traits of speakers independent of the person, spoken content, language, cultural background, and acoustic disturbances at human parity or even super-human levels. While this is not reached at the time for many tasks such as speaker emotion recognition, deep learning - often described to lead to "dramatic improvements" - in combination with sufficient learning data satisfying the "deep data cravings" holds the promise to get us there. Luckily, every second, more than two hours of video are uploaded to the web and several hundreds of hours of audio and video communication in most languages of the world take place. If only a fraction of these data would be shared and labelled reliably, "x-ray"-alike automatic speaker analysis could be around the corner for next gen human-computer interaction, mobile health applications, and many further benefits to society.

In this light, first a solution towards utmost efficient exploitation of the "big" (unlabelled) data available is presented. Small-world modelling in combination with unsupervised learning help to rapidly identify potential target data of interest. Then, gamified dynamic cooperative crowdsourcing turn its labelling into an entertaining experience, while reducing the amount of required labels to a minimum by learning alongside the target task also the labellers' behaviour and reliability. Then, increasingly autonomous deep holistic end-to-end learning solutions are presented for the task at hand. Benchmarks are given from the 15 research challenges organised by the speaker over the years at Interspeech, ACM Multimedia, and related venues. The concluding discussion will contain some crystal ball gazing alongside practical hints not missing out on ethical aspects.