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When you can’t beat them, join them

How | learned to stop worrying and started to love the machine

Hynek Hermansky



< Maxwell
demon

LOW ENTROPY

The Demon closes door when a
slow air molecule comes and lets
the fast air molecules to go
through

When decreasing entropy, one
needs to know what one is doing!

The Demon must KNOW which molecule is fast and which is slow!



Message (<50 bps) Message (<50 bps)

> 50 kb/S C= Wlog,(S/N+1), W=5kHz, S/N+1>103

message and its coding redundancy,
W who is speaking, emotions, accent, acoustic
machine environment, ....
mesSsage <50 b/S < 3bits/phoneme, < 15 phonemes/s

message



KNOWLEDGE

* magic
* experts, beliefs, previous experience
* measurements (data)

HARDWIRED FROM DATA
Reusable permanent knowledge Data do not lie
but but
Experts and beliefs can be wrong Transcribed data are expensive
Wrong knowledge is worse that no No need to re-learn known facts
knowledge Bad data are worse than no data

More reliable knowledge hardwired, less training data needed

When using “knowledge”, then which knowledge?



Environment

(survival)

Evolution of hearing

>

200 000 000 years

Pristerodon

Homo sapiens

We hear to survive

.... sensory neurons are adapted
to the statistical properties of the
signals to which they are exposed.

Simoncelli and Olshausen

Hearing
(communication)

Evolution of speech

»
»

200 000 years

We speak to hear

We speak in order to be heard
and need to be heard in order
to be understood.

Jakobson and Waugh p.95

Human speech evolved to fit properties of human hearing



LEARN FROM HUMAN

HEARING

HOW?
(human hearing)

WHAT?
(recognize message)

WHY ?



More data is always better than more thinking
- Fred Jelinek (attributed to Eric Brill)

Artificial Neural Networks

* Discriminative nonlinear classifiers introduced to ASR in
late eighties of 20t century

* Fewer restrictions on form of input features

e Current hardware advances allow for new revolutionary
approaches to ASR

BIG DATA
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deep
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When you can’t beat them,
join them!



TRAINING

SAE TRAINING

LEARN A : HARDWIRE
from the . &3 relevant hearing
MACHINE knowledge

RELEVANT
GOOD properties of BETTER
MACHINE human hearing MACHINE
GOOD BETTER BETTER

ENGINEERING SCIENCE ENGINEERING



Let’s assume

* Linguistic messages are represented by sequences
of speech sounds (context-dependent or context-
independent, senones,...)

* not everybody agrees but .....

* Very large amounts of speech data labeled with
speech sounds are available
* hand labeled, transcribed with force alignment,...



Linear discriminant analysis
(Ronald A. Fisher 1936)

* find such projection of vectors of
data, which preserves most of the
discriminability

* data vectors need to be labeled
by classes to be discriminated
among

* vyields matrix of discriminant
vectors, ordered by their
discrimination power

e discriminants are linear and
therefore can be easily
interpreted




Spectral processing of short-time speech spectrum
(with Naren Malayath 1998)

frequency




LDA-derived spectral bases
(30 hours of continuous telephone speech database — automatic labeling)

sensitivity to spectral

perturbations
Discriminant Vector 1 Discriminant Vector 2
0.3 : 0.3 0.06
29% A 27% - LDA
I > spectral
1 A > i bases
0 “"I - — 0 / \ h=
’ o 0.02¢
(%]

-0.3 -0.3 : ‘ : 0 : : !
0 1 2 3 4 0o 1 2 3 4 o 1 2 3 4
Discriminant Vector 3 Discriminant Vector 4 Frequency (kHz)

03— 0.3 e

\ 11% 8% | 0.06 ' o
N i - ~ critical band
N "l S filterbank
0 ‘»"’ﬂf\ .' VAN £ 004
| I 2
| \" [}
v 0.02
-0.3 -0.3 .
0 1 2 3 4 0 1 2 3 4

Frequency (kHz)

Frequency (kHz)

Malayath and Hermansky 1998, Valente and Hermansky 2006

0 1 2 3 4

Frequency (kHz)

Similar observations using different optimization technigues

Biem and Katagiri 1994, Cohen et al 1996, Kamm et al 1997, Palival et al 1997, Burget and Hermansky 2001



1. Derive truncated matrix M by
keeping only the LDA-derived
bases with high eigenvalue
discriminants

2. Compute the pseudoinverse M*
of the truncated discriminant
matrix M

3. The product M M*represents
weightings (filters) applied to the
spectrum
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Burget and Hermansky TSD 2001
Data driven design of filter bank for speech recognition



Using deep neural net classifiers, filters directly from speech signal

Sainath et al ASRU 2013

Input Convolution Max pooling Nonlinearity
M samples N x P weights M-N+1 window log(ReLU(...))
1XP
l:f\\v’f , \N\~A— ) pr— =N >
s [ > = I—>
> P —>

DNN-based ASR

Q: what are the learned weights in the convolution input layer?
A: impulse responses of filters consistent with critical bands of hearing

also Palatz et al 2013, Tueske et al 2014, Golik et al 2015, Gharemani et al 2016,
Luo and Mesgarani 2918, ...



Magnitude
response of
learned filters
ordered by center

frequency
Gharemani et al 2016
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Effect of auditory-like spectral
resolution

short-term spectrum spectrum with auditory-like
from FFT anaIyS|s spectral resolution
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TRAPS

Hermansky and Sharma, ICSLP 1998

Classifying TempoRAI Patterns of Spectral Energies
~ 1000 ms

frequency
o0

rocessin
P — probability estimator —> probability probabilities
of speech

processing__s neural net 7 estimator sounds
probability estimator

time
rocessin neural net
p 9—> probability estimator ~  merging vector of
posterior
neural net neural net ers
—>

Some “novel” (in 1998) elements of TRAPS

* Rather long temporal context of the signal as input
e Hierarchical structured neural net (“deep neural net”)
* Independent processing in frequency-localized parallel neural net estimators
* most of these elements typically found in current state-of-the-art speech recognition

systems



Tonality [Bark]

Temporal processing of auditory-like speech spectrum

van Vuuren and Hermansky 1997, Valente and Hermansky 2006
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amplitude of impulse response

LDA-derived FIR filters

(30 hours of continuous telephone speech database — automatic labeling)

impulse responses frequency responses
active parts of impulse responses > 200 ms band-pass roughly 1-10 Hz
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frequency responses
(1st discriminant in all frequency channels)
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Modulation filters are very similar at all carrier frequencies



>

normalized amplitude

Frequency response of the 1°t
temporal discriminant

Sensitivity of human hearing to

modulations (Riesz 1928)

Frequency response of the 15t
temporal principal component of
about 3000 cortical spectro-
temporal receptive fields (ferret)
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Modulation spectra of speech

Speech Modulation Spectrum
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sentences (TIMIT)

conversations (switchboard)

interviews (Buckeye)

audiobooks
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normalized amplitude

Speech Modulation Spectrum
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Ding, Patel and Poeppel 2015
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Mahesan, Mesgarani, Hermansky (in preparation)

Optimizing temporal processing
for discrimination among speech
sounds vyields filters, which are
consistent with temporal
properties of mammalian hearing.



Enhancing message-carrying spectral

components

original speech

O

spectrogram

frequency

Hermansky and Morgan 1990

linear distortions
(stationary filter)

recognizer trained
on data from New
Jersey Labs

tested in New Jersey
2.8 % error

tested in Colorado
60.7 % error

tested in New Jersey
2.2 % error

tested in Colorado
2.9 % error




DNN-based design of linear pre-processing
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Input layer

time

inputn  modulation frequency filters

weighted sum of spectral values at frequency n within a time window AT
(weights optimized with the rest of the DNN weights)



DNN-based

layers

learning of —
. o oo DNN
modulation = ® S0 > pied
: Z a
frequency filters = 4 ASR
S O
= o

Pesan et al 2015

filter impulse responses
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Optimizing for classification of speech sounds suggest critical-band-like
spectral resolution and processing within at least 200 ms temporal intervals

e
N &

critical band [Bark]

N & O @

data for
classification of
speech sounds

Important information about the message is syllable-
length time-frequency patterns



Where Is the message In
speech?
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Mutual Info (bits)

Mutual information between a point X in a time-
frequency representation of speech (spectrogram)

and a phoneme label Y
Yang et al, Speech Communication 2000
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Mutual Info (bits)
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2D (time-frequency) processing of auditory-like speech spectrum

/ /a/

400 ms
>
U _——
?y '?: % 7 =
=g . =
qﬂé 3 .
T = _— -— “‘-

/j/|/u/|/a/| /il ‘/0/ i/j/ ‘ /o/

time



2_D d |Scr| m | nantg\/lany 2D discriminants are frequency-selective,

emphasizing particular parts of speech spectrum.

Valente and Hermansky 2006
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DNN-based design of linear 2D pre-processing
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speech

¢

auditory-like spectral analysis

l Spectro-Temporal 32 512 512
filters
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phoneme
classes

frequency
-

input

time

trained

Subset of the phoneme-labeled Wall Street Journal corpus, roughly 37K
sentences spoken by 284 speakers for a total of about 62 hours of data,

training only on center frames of each phoneme segment






Convolve each temporal trajectory
of spectral energy with different FIR
filters (rows of the spectro-temporal
filters matrices)

7N/

K
AX%7

N
S

each node in the first hidden layer sees speech with
differently emphasized spectral components (different

combinations of spectral channels)

[ rmmmmm— e —p —

original spectrum

phoneme
classes



Articulatory Bands
French and Steinberg 1949

250-375-505-654-795-995-1130-1315-1515-1720-1930-2140-2355-
2600-2900-3255-3680-4200-4860-5720-7000 Hz

e 20 frequency bands in speech spectral region

* each band contributes about equally to human
speech recognition

e any 10 bands sufficient for 70% correct recognition
of nonsense syllables, better than 95% correct
recognition of meaningful sentences [Fletcher and
Steinberg 1929]

iU



HEARING



message? who? where from?

|n'ter-sp|ke & - number of
interval spiking neurons
~100 ms ~100,000,000
) o up to 10, 000,000
c . . .
2 S\ e 2 active in a given task
c o0
§ lomniscus I \ Olivocochlear fiber %
_8 OS:\;.;YW 'c ( , Dorsal cochlear nucleus g
g- Ventral cochlear nucleu: g
~1 ms = “
m";oz, ~100,000

speech signal



TONOTOPY

different frequencies
excite different parts
of the cortex

different frequencies
excite different parts
of the cochleaa

1,000 Hz
2,000 Hz

apex
low frequencies

processing
stages

4,000 Hz

1,500 Hxz

20,000 Hx

5,000 Hz

7,000 Hz

base
high frequencies



Cortical spectro-temporal
receptive fields (STRFs)

Frequency (KHz)

Neuron 1 Neuron 2
8 W
5
-
0.25
Neuron 3 Neuron 4
8 -
-_ - -
0.25
0 0.25 0 0.25
Time (s)

Mesgarani et al Interspeech 2010

first principal component of
about 700 STRFs

Mesgarani et al (in preparation)

Frequency (KHz)

* Frequency-selective (> 2 octaves)
and relatively long in time (> 200 ms)

0.5
025
0125

20

150 250

Time (s)

0.5



SPEAKING



tongue
velum

larynx

nasal cavity

mouth
teeth

lips

lungs

breathing
eating
biting

speaking?



Resonance frequencies of vocal tract [Hz]

INFORMATION ABOUT TRACT SHAPES DISTRIBUTED IN FREQUENCY
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motor critical elements
control (tongue, lips, velum)

Seo— -~
x’.\':
F2 o— o — —e

_-.
F1 e = —l= —t =l —@

0 2 4 6 8 10 12 14 16
distance of tongue constriction from lips

shape of the
whole vocal
tract

Vv v vy

distance from lips

< »
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tongue
| constriction

lips
any change in the tract shape is reflected at ALL

FREQUENCIES of speech spectrum !

Information about vocal tract shape (about linguistic
message) is coded redundantly in frequency

spectrum of speech signal
(redundant contributions of movements of
critical elements in different frequency

bands)



INFORMATION ABOUT TRACT SHAPES DISTRIBUTED IN TIME

intended speech sounds

sluggishness of vocal organs

O]

produced speech sounds

from Sri Narajanan

movements of vocal organs are
rather sluggish



Where is the corticulation in production?
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Functional Organization of Human Sensorimotor Cortex for Speech Articulation
Kristofer E .Bouchard, Nima Mesgarani, Keith Johnson, and Edward F. Chang, Nature.2013



nasal cavity brain

mouth
teeth
lips

Medial geniculate body
)
Inferior colliculus

Superior olive

4

Cochlear nucleus
lungs 4
Auditory nerve

4

4,000 Hx

ear

Redundant spread of information

. every change of the tract
shape shows at all
frequencies of speech
spectrum

* frequency selective (about 20 bands)
. tract shape changes do not

happen very fast « sluggish (tenths of seconds)



decoding

<50 bps coding > 50 kbs use <50 bps
introduce redundancies

message —> redundancies — sp.eech —> . —> message

in frequency signal for reliable
and in ime extraction of
A the message
noise
PRODUCTION TRANSMISSION PERCEPTION

redundancy in frequency

production: tract acoustics distributes the information to all frequencies of the speech spectrum
perception: hearing selectivity allows for decoding the information in separate frequency bands

redundancy in time

production: tract sluggishness (coarticulation) distributes information about each speech sound in time
perception: temporal sluggishness of hearing collect the information distributed in time



ENGINEERING

98



MLP

127 different stream combinations in sub-band 1—> MLP

MLP
hierarchical MLP structures sub-band 2—> MLP 0
sub-band 3—> MLP form all 4
. _ nonempty g
evaluate word error for different signal — sub-band 4—> MLP —s combinations — o —>
) ) of band-limited 4
stream comblnatlons sub-band 5—> MLP streams g
(o]
sub-band 6 — MLP
MLP
Hermansky et al 1996 subband 7 —> MLP MILP
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Word error rates on very noisy
reverberant speech (Chime 5)

length of the word error rate [%]
input pattern [s]

0.25 33.4
0.5 70.7
1.0 66.7

1.5 64.2



Machine Recognition of Speech ?

sequence of words

SPEECH SOUNDS
performance
| monitoring
stream
selection

N

stream forming

,T\

deciseconds chunks of
auditory-like spectrum

'T\

SIGNAL

streams
* enhancing different parts
of speech spectrum
* enhancing different
spectral and temporal
modulations

performance monitoring
e estimate quality of
information without
knowing the information



multiband recognizer with stream dropping
Mallidi and Hermansky 2016

> stream1l > DNN1 >

form S stream2 -> DNN2 -> | fusingDNN search for word
speech > processing : : : , : trained with | —> the best string
streams : : : : : |band dropouts path

-> streamn > DNNn >

stream performance
selection < monitoring <

word error rates of on Aurora noisy data

auditory spectral stream performance oracle
spectrum streams dropping monitoring  selection
12.6 11.0 9.9 9.6 7.9

Sri Harish Mallidi, JHU PhD Thesis, 2018

training with stream dropping also applied in Park, Daniel S., et al. "Specaugment:
A simple data augmentation method for automatic speech recognition.” 2019



Environment Hearing
(survival) (communication)

Evolution of hearing

»

200 000 000 years

Evolution of speech

»
>

200 000 years

il

Pristerodon Homo sapiens

We hear to survive We speak to hear

Human speech evolved to fit properties of human hearing
ergo

Optimizing speech technology on speech data yields relevant hearing knowledge

Supported by the National Science Foundation
EAGER Grant 126289




Prof. Frederick Jelinek says:
“Airplanes don'’t flap their wings”.

S. Lohr, New York Times, March 6, 2011

“Airplanes do not flap wings but have wings nevertheless,
..... Of course, we should try to incorporate the knowledge
that we have of hearing, speech production, etc., into our
systems, but first we must figure out how to parameterize
it, and how to estimate the parameter values from speech
data. There is no other way.

F. Jelinek, Five speculations (and a divertimento) on the themes of H. Bourlard,
H. Hermansky, and N. Morgan, Speech Communication 18, 1996
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Whither Speech Recognition? Letter to Editor
J.Acoust.Soc.Am.

J.R. PIERCE
Bell Telephone Laboratories, Inc.,, Murray Hill, New Jersey 07971

Implement.... intelligence and knowledge of language
comparable to those of a native speaker !

.... Should people continue work towards speech recognition by
machine ? Perhaps it is for people in the field to decide.

why to work on machine recognition of speech?

useful technology, profits, safe jobs,.....



[ Why to climb Mount Everest?
lafe ", Because itis there.

|

s George Leigh Mallory

M~

Why to study speech?

Spoken language is one of the most
amazing accomplishments of human race.




