The representation of speech in the human and artificial brain

Dr. Odette Scharenborg

Associate Professor & Delft Technology Fellow Delft University of Technology The Netherlands o.e.scharenborg@tudelft.nl

The representation of speech in the human and deep neural networks

Dr. Odette Scharenborg

Associate Professor & Delft Technology Fellow Delft University of Technology The Netherlands o.e.scharenborg@tudelft.nl

Acknowledgements

- Polina Drozdova
- Roeland van Hout

- Sebastian Tiesmeyer
- Nikki van der Gouw
- Martha Larson
- Najim Dehak
- Junrui Ni
- Mark Hasegawa-Johnson

Ultimate goal

Automatic speech recognition (ASR) for all the world's languages & all types of speech

Problem

Transcription 1

Transcription 2

Transcription 3

signal.

nary code with which the present ls may take various forms, all of e property that the symbol (or 'epresenting each number (or sign differs from the ones represent: er and the next higher number litude) in only one digit (or puls Because this code in its primar; built up from the conventional a sort of reflection process and I rms may in turn be built up freform in signal.

which hnary code with which the present nated in 1s may take various forms, all of s the "refe property that the symbol (or a received presenting each number (or sign

s the "refe property that the symbol (or a receiver epresenting each number (or sigr differs from the ones represent: er and the next higher number (litude) in only one digit (or puls Because this code in its primar built up from the conventional a sort of reflection process and I rms may in turn be built up fr form in similar fashion, the c , which has as yet no recognized nated in this specification and s the "reflected binary code."

a receiver station, reflected binar

Possible solution

Create a flexible ASR that is trained on language/speech type X and mapped to language/speech type Y

What we need

- 1. Invariant units of speech which transfer easily and accurately to new languages & types of speech
- 2. ASR system that can flexibly adapt to new languages & types of speech
- 3. ASR system that can *decide* when to create a new sound category
- 4. ASR system that can *create* a new sound category

What we need

- 1. Invariant units of speech which transfer easily and accurately to new languages & types of speech
- 2. ASR system that can flexibly adapt to new languages & types of speech
- 3. ASR system that can *decide* when to create a new sound category
- 4. ASR system that can *create* a new sound category

Human listeners

1. Adapt to all types of pronunciations/speakers

2. Create new sound categories when learning a new language

Comparing humans and machines

Different hardware:

Same task: recognition of words from speech

⇒ Comparing humans and machines [Scharenborg, 2007]:

- provide insights into human speech processing (computational modelling)
- improve ASR technology (MFCCs, PLPs, templatebased ASR)

Ultimate question

 What is the optimal representation of speech for a DNN-based ASR to be able to map one language/type of speech to another?

This talk

- How do humans adapt? → Perceptual learning in humans
- Perceptual learning in DNNs
- Perceptual learning in DNNs over time
- Representation of speech in DNNs

Perceptual learning

"[...] relatively long-lasting changes to an organism's perceptual system that improve its ability to respond to its environment and are caused by this environment" [Goldstone, 1998, p. 586]

Perceptual learning

"[...] relatively **long-lasting changes** to an organism's perceptual system that improve its ability to **respond to its environment** and are caused by this environment" [Goldstone, 1998, p. 586]

UDEITT [Drozdova, van Hout & Scharenborg, 2015, 2016; Norris, McQueen & Cutler, 2003]¹⁵

General procedure

Phonetic categorisation results

TUDelft [Scharenborg, Mitterer & McQueen, Interspeech, 2011]

Lexically-guided perceptual learning

- Causes a temporary change in phonetic category boundaries
- Needs lexical or phonotactic knowledge
- Generalises to words that have not been presented earlier
- Speaker dependent
- Fast: only 10-15 ambiguous items needed
- Long-lasting effect

JDelft [Clarke-Davidson et al., 2008; Eisner & McQueen, 2005, 2006; Kraljic & Samuel, 2005, 2007; McQueen et al., 2006; Scharenborg & Janse, 2013; Drozdova, van Hout, & Scharenborg, 2016]

Perceptual learning in DNNs

... but can they flexibly adapt to different speech types like human listeners can?

TUDelft [Scharenborg, Tiesmeyer, Hasegawa-Johnson, Dehak, 2018]

If so, **visualize** the mechanism by which the DNNs perform this adaptation \rightarrow

intermediate representations that might have correlates in human perceptual adaptation

Lexical retuning

- 1. Train baseline DNN on Dutch read speech ~64h:
- 2. Retrain the baseline model using the acoustic stimuli of the human experiment [Scharenborg & Janse, 2013]:

Baseline	AmbR	AmbL
 120 natural words 40 [J]-final words 40 [I]-final words 	 120 natural words 40 [I]-final words 40 [J]-final words: [J] replaced by [I/J] 	 120 natural words 40 [J]-final words 40 [I]-final words: [I] replaced by [I/J]

More [J] responses when exposed to wekke[l/J] → Learn to interpret [l/J] as [J]

More [I] responses when exposed to appe[l/」]

 \rightarrow Learn to interpret [l/J] as [l]

Expectations

Differences particularly between AmbL and AmbR models

Results

- Lexical retuning results
- Inter-segment distances
- Visualisations of the clusters in the hidden layers

Lexical retuning results

Test set = train set

	Sound	Sound(s) classified (%)	
	Baseline, retrained model		
	[1]	l(97.6) , m(3.4)	
	[J]	J(95.0) , sil(5.0)	
	[L/I]	l(46.9) , sil(23.5), ə(19.8), ɹ(8.6) , εi (1.2)	
	AmbL model		
	[1]	o(78.0), ɔ(10.4), sil(2.4), e(2.4), ɛi (2.4), øː(2.4)	
	[4]	J(87.5) , e(7.5), ∧u(2.5), εi(2.5)	
\rightarrow	[L/l]	<mark>l(81.5)</mark> , ə(12.3), ə(2.5), εi(2.5), t(1.2)	
	AmbR model		
	[1]	I(97.6) , sil(3.4)	
	[L]	J(72.5) , ə(15.0), sil(10.0), t(2.5)	
G	[./ا]	J(88.9) , sil(6.2), ə(4.9)	
ÍU Delft			

Inter-segment distances for each layer

For higher layers, distance

- → [I]-[I/J] decreases for AmbL model
- \rightarrow []-[L] decreases for AmbR model

Visualisations of the learned clusters in the hidden layers

PCA visualisations of the 4th hidden layers

Baseline model

ŤUDelft

PCA visualisations of the 4th hidden layers

AmbR model

[L/J]

PCA visualisations of the 4th hidden layers

AmbL model

So ...

- DNNs trained with ambiguous sounds show perceptual learning
- Not only at the output layer but also at intermediate layers

Perceptual learning in DNNs over time

 Human listeners only need 10-15 ambiguous items

• How about DNNs?

Same experimental set-up

- Retraining in 10 bins of 4 ambiguous items
- Test on unseen data from next bin

Proportion of [J] responses over time

Baseline model

ŤI

Proportion of [J] responses over time

Proportion of [J] responses over time

AmbL model

So ...

DNNs

- Need only a few ambiguous items
- Show a similar step-like function as humans

Representation of speech in DNNs

• Free reign to the DNN

What speech representations are learned when faced with the large variability in speech?

Research question

Can a generic DNN-based ASR trained to distinguish high-level speech sounds learn the underlying structures used by human listeners to understand speech?

An example from vision

Methodology

- Naïve, generic feed-forward deep neural network
 3 hidden layers with 1024 nodes each
- Corpus Spoken Dutch, 64h read speech
- Consonsant/vowel classification task
- Visualize the activations of the speech representations at the hidden layers
 - Using different linguistic labels, to check for clustering

Linguistic labels

- <u>Vowels/consonants</u> differ in the way they are produced: absence/presence of a constriction in the vocal tract
- <u>Phoneme</u>: the smallest unit that changes the meaning of a word
 e.g. *ball* and *wall*
- <u>Articulatory feature</u>: acoustic correlate of the articulatory properties of speech sounds
 - *Manner of articulation:* type of constriction (e.g., full closure, narrowing)
 - Place of articulation: location of the constriction (consonants only)
 - *Tongue position:* location of the bunch of the tongue (vowels only)

ŤUDelft

C/V classification results

- Frame level accuracy: 85.5%
 - Averaged over 5 training runs
 - Consonants: 85.19% / Vowels: 86.69% correct

Visualisations: V/C classification task

ŤUDelft

Layer 2 of the network

Layer 3 of the network

Manner of articulation, 3rd layer Consonants Vowels

- •: approximant
- •: nasal

TUDelft

a.

- •: fricative
 - •: plosive

- •: diphthong •: short vowel
- •: long vowel

- •: alveolar consonant
- : glottal consonant
- •: palatal consonant

ŤUDelft

- •: bilabial consonant
- •: labiodental consonant •: front vowel
- •: velar consonant

- •: central vowel •: back vowel

Summary

DNNs

- Progressive abstraction in subsequent hidden layers
- Capture the structure in speech by clustering the speech signal, without explicit training
- Adapt to nonstandard speech on the basis of only a few labelled examples, showing a step-like function

Our needs

- Invariant units of speech which transfer easily and accurately to other languages
- → DNN phone categories are flexible
- > DNNs automatically create linguistic categories
- ASR system that can flexibly adapt to new types of speech
- DNNs are able to do that

Next: ASR system that can *decide* when to create a new sound category, and do so

