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Ultimate goal

Automatic speech recognition (ASR) for all the
world’s languages & all types of speech
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Problem

Transcription 1

Transcription 2

Transcription 3
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Possible solution

Create a flexible ASR that is 
trained on language/speech type X and
mapped to language/speech type Y
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What we need

1. Invariant units of speech which transfer easily and 
accurately to new languages & types of speech

2. ASR system that can flexibly adapt to new 
languages & types of speech

3. ASR system that can decide when to create a new 
sound category

4. ASR system that can create a new sound category 
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Human listeners

1. Adapt to all types of pronunciations/speakers

2. Create new sound categories when learning a 
new language
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Comparing humans and machines

• Different hardware: vs. 

• Same task: recognition of words from speech

Comparing humans and machines [Scharenborg, 2007]:
– provide insights into human speech processing 

(computational modelling)
– improve ASR technology (MFCCs, PLPs, template-

based ASR)
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Ultimate question

• What is the optimal representation of speech for
a DNN-based ASR to be able to map one
language/type of speech to another?
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This talk

• How do humans adapt?  Perceptual learning in 
humans

• Perceptual learning in DNNs

• Perceptual learning in DNNs over time

• Representation of speech in DNNs
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Perceptual learning

“[…] relatively long-lasting changes to an 
organism’s perceptual system that improve its 
ability to respond to its environment and are 
caused by  this environment” [Goldstone, 1998, p. 586]

[Drozdova, van Hout, Scharenborg, 2018; Scharenborg & Janse, 2013]
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[l/ɹ]

appe[l/ɹ] (= apple) wekke[l/ɹ] (= alarm clock)

mee[l/ɹ]

(= flour) (= lake)

Lexically-guided perceptual learning
ex

po
su

re
te

st

Ambiguous input

Adjustment of the phoneme 
category boundary

[Drozdova, van Hout & Scharenborg, 2015, 2016; Norris, McQueen & Cutler, 2003]

Disambiguating context
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General procedure 
Exposure: lexical

decision task

Amb-l group:
- 40 ambiguous /l/ 
words
- 40 natural /r/ words

Amb-r group
- 40 ambiguous /r/ 
words
- 40 natural /l/ words

Test: phonetic
categorisation task

Ambiguous [l/r] 
test items

+ filler words and nonwords 5 steps, each 18 times

20% 40% 50% 60% 80% /r/
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Phonetic categorisation results

R: listeners who 
learned to map 
[l/ɹ] onto [ɹ]

L: listeners who 
learned to map 
[l/ɹ] onto [l]

[Scharenborg, Mitterer & McQueen, Interspeech, 2011] 
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Lexically-guided perceptual learning

• Causes a temporary change in phonetic category boundaries

• Needs lexical or phonotactic knowledge

• Generalises to words that have not been presented earlier

• Speaker dependent

• Fast: only 10-15 ambiguous items needed

• Long-lasting effect

[Clarke-Davidson et al., 2008; Eisner & McQueen, 2005, 2006; Kraljic & Samuel, 2005, 2007; McQueen et al., 
2006; Scharenborg & Janse, 2013; Drozdova, van Hout, & Scharenborg, 2016]
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Perceptual learning in DNNs

inspired by

… but can they flexibly adapt to different speech 
types like human listeners can?

[Scharenborg, Tiesmeyer, Hasegawa-Johnson, Dehak, 2018]
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If so, visualize the mechanism by which the DNNs 
perform this adaptation 
intermediate representations that might have 
correlates in human perceptual adaptation

DNN
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Lexical retuning

1. Train baseline DNN on Dutch read speech ~64h:

2. Retrain the baseline model using the acoustic stimuli of 
the human experiment [Scharenborg & Janse, 2013]:

Baseline

• 120 natural words
• 40 [ɹ]-final words
• 40 [l]-final words

AmbR

• 120 natural words
• 40 [l]-final words
• 40 [ɹ]-final words: 

[ɹ] replaced by 
[l/ɹ]

AmbL

• 120 natural words
• 40 [ɹ]-final words
• 40 [l]-final words: 

[l] replaced by 
[l/ɹ]
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Findings Expectations

More [ɹ] responses when 
exposed to wekke[l/ɹ]
 Learn to interpret [l/ɹ] as [ɹ]

More [l] responses when 
exposed to appe[l/ɹ]
 Learn to interpret [l/ɹ] as [l]

Differences particularly between 
AmbL and AmbR models 
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Results

• Lexical retuning results

• Inter-segment distances

• Visualisations of the clusters in the hidden layers
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Lexical retuning results

Test set = train set
Sound

presented
Sound(s) classified (%)

Baseline, retrained model
[l] l(97.6), m(3.4)
[ɹ] ɹ(95.0), sil(5.0)
[l/ɹ] l(46.9), sil(23.5), ə(19.8), ɹ(8.6), ɛi (1.2)
AmbL model
[l] o(78.0), ɔ(10.4), sil(2.4), e(2.4), ɛi (2.4), øː(2.4)
[ɹ] ɹ(87.5), e(7.5), ʌu(2.5), ɛi(2.5)
[l/ɹ] l(81.5), ə(12.3), ə(2.5), ɛi(2.5), t(1.2)
AmbR model
[l] l(97.6), sil(3.4)
[ɹ] ɹ(72.5), ə(15.0), sil(10.0), t(2.5)
[l/ɹ] ɹ(88.9), sil(6.2), ə(4.9)
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Inter-segment distances for each layer

For higher layers, distance
 [l]-[l/ɹ] decreases for AmbL model
 [ɹ]-[l/ɹ] decreases for AmbR model
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Visualisations of the learned clusters in the 
hidden layers
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PCA visualisations of the 4th hidden layers

[l/ɹ] 
[l]
[ɹ]

Baseline model
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PCA visualisations of the 4th hidden layers

AmbR model
[l/ɹ] 
[l]
[ɹ]
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PCA visualisations of the 4th hidden layers

AmbL model
[l/ɹ] 
[l]
[ɹ]
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So … 

• DNNs trained with ambiguous sounds show 
perceptual learning

• Not only at the output layer but also at 
intermediate layers
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Perceptual learning in DNNs over time

• Human listeners only need 10-15 ambiguous
items

• How about DNNs?

[Ni, Hasegawa-Johnson, Scharenborg, 2019]
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Same experimental set-up

• Retraining in 10 bins of 4 ambiguous items

• Test on unseen data from next bin

1 2 3 4 5 6 7 8 9 10+ + + + + + + +
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Proportion of [ɹ] responses over time

Baseline model
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Proportion of [ɹ] responses over time

AmbR
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Proportion of [ɹ] responses over time

AmbL model
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So …

DNNs
• Need only a few ambiguous items

• Show a similar step-like function as humans
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Representation of speech in DNNs

• Free reign to the DNN

What speech representations are learned when
faced with the large variabiliy in speech?

[Scharenborg, van der Gouw, Larson, Marchiori, 2019]



38

Research question

Can a generic DNN-based ASR trained to 
distinguish high-level speech sounds learn the 
underlying structures used by human listeners to 
understand speech?
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An example from vision

Extract and learn features associated with planes and
chairs?

≠?
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Methodology

• Naïve, generic feed-forward deep neural network
– 3 hidden layers with 1024 nodes each

• Corpus Spoken Dutch, 64h read speech

• Consonsant/vowel classification task

• Visualize the activations of the speech 
representations at the hidden layers
– Using different linguistic labels, to check for clustering
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Linguistic labels

• Vowels/consonants differ in the way they are produced: 
absence/presence of a constriction in the vocal tract

• Phoneme: the smallest unit that changes the meaning of 
a word e.g. ball and wall

• Articulatory feature: acoustic correlate of the articulatory 
properties of speech sounds
– Manner of articulation: type of constriction (e.g., full closure, 

narrowing)
– Place of articulation: location of the constriction (consonants only)
– Tongue position: location of the bunch of the tongue (vowels only)
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C/V classification results

• Frame level accuracy: 85.5%
– Averaged over 5 training runs
– Consonants: 85.19% / Vowels: 86.69% correct
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Visualisations: V/C classification task

Original input of the network Layer 1 of the network

Layer 2 of the network Layer 3 of the network

• vowel
• consonant
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Manner of articulation, 3rd layer
Consonants Vowels
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Place of articulation, 3rd layer
Consonants Vowels
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Summary

DNNs
• Progressive abstraction in subsequent hidden 

layers

• Capture the structure in speech by clustering the 
speech signal, without explicit training

• Adapt to nonstandard speech on the basis of only 
a few labelled examples, showing a step-like 
function



47

Our needs

• Invariant units of speech which transfer easily and 
accurately to other languages 

DNN phone categories are flexible 
DNNs automatically create linguistic categories

• ASR system that can flexibly adapt to new types of 
speech

DNNs are able to do that

Next: ASR system that can decide when to create a 
new sound category, and do so
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