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Ultimate goal

Automatic speech recognition (ASR) for all the
world’s languages & all types of speech
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Transcription 1

Transcription 2

Transcription 3
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Possible solution

Create a flexible ASR that is
trained on language/speech type X and
mapped to language/speech type Y
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What we need

1. Invariant units of speech which transfer easily and
accurately to new languages & types of speech

2. ASR system that can flexibly adapt to new
languages & types of speech

3. ASR system that can decide when to create a new
sound category

4. ASR system that can create a new sound category
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Human listeners

1. Adapt to all types of pronunciations/speakers

2. Create new sound categories when learning a
new language
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Comparing humans and machines

» Different hardware: Q VS. g

« Same task: recognition of words from speech

= Comparing humans and machines [scharenborg, 2007]:

— provide insights into human speech processing
(computational modelling)

— Improve ASR technology (MFCCs, PLPs, template-
based ASR)
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Ultimate question

* What is the optimal representation of speech for
a DNN-based ASR to be able to map one
language/type of speech to another?

o]
TUDelft

11



This talk

How do humans adapt? =» Perceptual learning in
humans

Perceptual learning in DNNSs

Perceptual learning in DNNSs over time

Representation of speech in DNNs
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Perceptual learning

“[...] relatively long-lasting changes to an
organism’s perceptual system that improve Its
ability to respond to its environment and are
caused by this environment” (colastone, 1008, p. 586)

TUDelft [Drozdova, van Hout, Scharenborg, 2018; Scharenborg & Janse, 2013] **



Perceptual learning
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OLexicaIIy-guided perceptual learning

Disambiguating context Ambiguous input

I/J/
\r /[]\

O appe[l/.l] (= apple) Wekke[|/J] (= alarm clock)
D -
o
o
>
)
- mee|l/l]
Adjustment of the phoneme
category boundary
n -
g |

- (= flour) - lake)

TU I:)ehct[Drozdova, van Hout & Scharenborg, 2015, 2016; Norris, McQueen & Cutler, 2003}~



General procedure

Exposure: lexical ‘
decision task

(Amb-| group:

- 40 ambiguous /I/
words

- 40 natural /r/ words |

Test: phonetic
categorisation task

(Amb-r group

- 40 ambiguous /r/
words

- 40 natural /I/ words

]
TUDelft + filler words and nonwords

\_

Ambiguous [l/r]

test items

YUYVYYY

20% 40% 50% 60% 80% /r/

J

5 steps, each 18 times
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Phonetic categorisation results
% © R: listeners who
8 learned to map
s 3- [I/1] onto [4]
o L: listeners who
) learned to map
o |F > = [I/1] onto [l]
20% Irlf coda | o0% frlf coda 80% Irlf coda

morphed /I/-/r/ continuum

TUDelft [Scharenborg, Mitterer & McQueen, Interspeech, 2011]
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Lexically-guided perceptual learning

Causes a temporary change in phonetic category boundaries
* Needs lexical or phonotactic knowledge

« Generalises to words that have not been presented earlier

« Speaker dependent

* Fast: only 10-15 ambiguous items needed

« Long-lasting effect

TU Delft [Clarke-Davidson et al., 2008; Eisner & McQueen, 2005, 2006; Kraljic & Samuel, 2005, 2007; McQueen et al., "

2006; Scharenborg & Janse, 2013; Drozdova, van Hout, & Scharenborg, 2016]



Perceptual learning in DNNSs

... but can they flexibly adapt to different speech
types like human listeners can?

TUDelft [Scharenborg, Tiesmeyer, Hasegawa-Johnson, Dehak, 2018]
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If so, visualize the mechanism by which the DNNs
perform this adaptation -

intermediate representations that might have
correlates in human perceptual adaptation

AN
-
O
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Lexical retuning

1. Train baseline DNN on Dutch read speech ~64h:

2. Retrain the baseline model using the acoustic stimuli of
the human experiment [Scharenborg & Janse, 2013]:

e 120 natural words e 120 natural words e 120 natural words

e 40 [4]-final words e 40 [l]-final words e 40 [4]-final words

e 40 [I]-final words e 40 [4]-final words: e 40 [l]-final words:
[4] replaced by [1] replaced by
[1/4] [1/4
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Findings Expectations

» ]

More [1] responses when Differences particularly between
exposed to wekke[l/] AmbL and AmbR models

—> Learn to interpret [I/1] as [J]

More [I] responses when
exposed to appe|l/]

— Learn to interpret [l/1] as [l]

]
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Results

« Lexical retuning results
 Inter-segment distances

 Visualisations of the clusters in the hidden layers

o]
TUDelft

23



Lexical retuning results

Test set = train set

Sound Sound(s) classified (%)

presented
Baseline, retrained model

1(97.6), m(3.4)
NARE 4(95.0), sil(5.0)

—> 11 1(46.9), sil(23.5), 9(19.8), 4(8.6), €i (1.2)
AmbL model

TN 0(78.0), 9(10.4), sil(2.4), e(2.4), &i (2.4), 8:(2.4)
1(87.5), e(7.5), Au(2.5), £i(2.5)
— [1/4] 1(81.5), 8(12.3), 8(2.5), €i(2.5), t(1.2)
AmbR model
1(97.6), sil(3.4)
1(72.5), 5(15.0), sil(10.0), (2.5)
1(88.9), sil(6.2), 8(4.9)
TUDelft
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Inter-segment distances for each layer

For higher layers, distance
- [I]-[I/1] decreases for AmbL model
- [4]-[I/1] decreases for AmMbR model
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Visualisations of the learned clusters in the
hidden layers
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PCA visualisations of the 4th hidden layers

Baseline model
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[1/4]
[1]
[1]
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PCA visualisations of the 4th hidden layers

AmbR model i
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PCA visualisations of the 4th hidden layers

AmbL model
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So ...

* DNNs trained with ambiguous sounds show
perceptual learning

* Not only at the output layer but also at
Intermediate layers
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Perceptual learning in DNNs over time

 Human listeners only need 10-15 ambiguous
items

« How about DNNs?

]
TUDelft [Ni, Hasegawa-Johnson, Scharenborg, 2019]
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Same experimental set-up

« Retraining in 10 bins of 4 ambiguous items

* Test on unseen data from next bin

Y &80 450 in
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Proportion of [1] responses over time

Baseline model

1-{] _._____-—-"“.’_'--____.____--"‘.
| B — 88—
0.8 —.
QU
EU.E
L
i
50.4
Q- —o— L | -4-- R_| ~k-- Amb_|
-®-Lr -—#® Rr & Ambr
0.2
e - il ———
B e S AT
D _{] ‘ i :: --- :‘_::“a“--.-..-m—_'..-_'_'_‘;—_—..l.‘-— - 1] .“'l-"-"-'.'.
0 2 4 6 8

]
TUDelft 33



Proportion of [1] responses over time
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Proportion of [1] responses over time

AmbL model
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So ...

DNNSs
* Need only a few ambiguous items

« Show a similar step-like function as humans
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Representation of speech in DNNSs

* Free reign to the DNN

=»What speech representations are learned when
faced with the large variablilly in speech?

TUDelft [Scharenborg, van der Gouw, Larson, Marchiori, 2019]
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Research guestion

Can a generic DNN-based ASR trained to
distinguish high-level speech sounds learn the
underlying structures used by human listeners to
understand speech?
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An example from vision

Extract and learn features associated with planes and
chairs?
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Methodology

Naive, generic feed-forward deep neural network
— 3 hidden layers with 1024 nodes each

Corpus Spoken Dutch, 64h read speech

Consonsant/vowel classification task

Visualize the activations of the speech
representations at the hidden layers
— Using different linguistic labels, to check for clustering

o]
TUDelft
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Linguistic labels

* Vowels/consonants differ in the way they are produced:
absence/presence of a constriction in the vocal tract

* Phoneme: the smallest unit that changes the meaning of
a word e.g. ball and wall

 Articulatory feature: acoustic correlate of the articulatory
properties of speech sounds

— Manner of articulation: type of constriction (e.g., full closure,
narrowing)

— Place of articulation: location of the constriction (consonants only)
— Tongue position: location of the bunch of the tongue (vowels only)

o]
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C/V classification results

* Frame level accuracy: 85.5%

— Averaged over 5 training runs
— Consonants: 85.19% / Vowels: 86.69% correct

o]
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Visualisations: V/C classification task
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Manner of articulation, 3rd layer

Consonants
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Vowels
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Place of articulation, 3rd layer

Consonants
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»: bilabial consonant
*: labiodental consonant

. velar consonant
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Summary

DNNSs

 Progressive abstraction in subsequent hidden
layers

« Capture the structure in speech by clustering the
speech signal, without explicit training

« Adapt to nonstandard speech on the basis of only
a few labelled examples, showing a step-like
function

o]
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Our needs

 Invariant units of speech which transfer easily and
accurately to other languages

=»DNN phone categories are flexible
=» DNNs automatically create linguistic categories

* ASR system that can flexibly adapt to new types of
speech

=» DNNSs are able to do that

Next: ASR system that can decide when to create a
new sound category, and do so

]
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